skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zufall, Rebecca"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Blanchard, Jeffrey Lawrence (Ed.)
    ABSTRACT Microorganisms play a central role in sustaining soil ecosystems and agriculture, and these functions are usually associated with their complex life history. Yet, the regulation and evolution of life history have remained enigmatic and poorly understood, especially in protozoa, the third most abundant group of organisms in the soil. Here, we explore the life history of a cosmopolitan species—Colpoda steinii. Our analysis has yielded a high-quality macronuclear genome forC. steinii, with size of 155 Mbp and 37,123 protein-coding genes, as well as mean intron length of ~93 bp, longer than most other studied ciliates. Notably, we identify two possible whole-genome duplication events inC. steinii, which may account for its genome being about twice the size ofC. inflata’s, another co-existing species. We further resolve the gene expression profiles in diverse life stages ofC. steinii, which are also corroborated inC. inflata. During the resting cyst stage, genes associated with cell death and vacuole formation are upregulated, and translation-related genes are downregulated. While the translation-related genes are upregulated during the excystment of resting cysts. Reproductive cysts exhibit a significant reduction in cell adhesion. We also demonstrate that most genes expressed in specific life stages are under strong purifying selection. This study offers a deeper understanding of the life history evolution that underpins the extraordinary success and ecological functions of microorganisms in soil ecosystems.IMPORTANCEColpodaspecies, as a prominent group among the most widely distributed and abundant soil microorganisms, play a crucial role in sustaining soil ecosystems and promoting plant growth. This investigation reveals their exceptional macronuclear genomic features, including significantly large genome size, long introns, and numerous gene duplications. The gene expression profiles and the specific biological functions associated with the transitions between various life stages are also elucidated. The vast majority of genes linked to life stage transitions are subject to strong purifying selection, as inferred from multiple natural strains newly isolated and deeply sequenced. This substantiates the enduring and conservative nature ofColpoda’s life history, which has persisted throughout the extensive evolutionary history of these highly successful protozoa in soil. These findings shed light on the evolutionary dynamics of microbial eukaryotes in the ever-fluctuating soil environments. This integrative research represents a significant advancement in understanding the life histories of these understudied single-celled eukaryotes. 
    more » « less
  2. Gilbert, Jack A (Ed.)
    Colpoda, one of the most widespread ciliated protozoa in soil, are poorly understood in regard to their genetics and evolution. Our research revealed extreme mitochondrial gene rearrangements dominated by gene loss events, potentially leading to the streamlining ofColpodamitogenomes. Surprisingly, while interspecific rearrangements abound, our population-level mitogenomic study revealed a conserved gene order within species, offering a potential new identification criterion. Phylogenomic analysis traced their lineage over 326 million years, revealing two distinct groups. Substantial genomic divergence might be associated with the lack of extended collinear blocks and relaxed purifying selection. This study systematically revealsColpodaciliate mitogenome structures and evolution, providing insights into the survival and evolution of these vital soil microorganisms. 
    more » « less
  3. Abstract Understanding the mechanisms that generate genetic variation, and thus contribute to the process of adaptation, is a major goal of evolutionary biology. Mutation and genetic exchange have been well studied as mechanisms to generate genetic variation. However, there are additional factors, such as genome architecture, that may also impact the amount of genetic variation in some populations, and the extent to which these variation generating mechanisms are themselves shaped by natural selection is still an open question. To test the effect of genome architecture on the generation of genetic variation, and hence evolvability, we studied Tetrahymena thermophila, a ciliate with an unusual genome structure and mechanism of nuclear division, called amitosis, whereby homologous chromosomes are randomly distributed to daughter cells. Amitosis leads to genetic variation among the asexual descendants of a newly produced sexual progeny because different progeny cells will contain different combinations of parental alleles. We hypothesize that amitosis thus increases the evolvability of newly produced sexual progeny relative to their unmated parents and species that undergo mitosis. To test this hypothesis, we used experimental evolution and simulations to compare the rate of adaptation in T. thermophila populations founded by a single sexual progeny to parental populations that had not had sex in many generations. The populations founded by a sexual progeny adapted more quickly than parental populations in both laboratory populations and simulated populations. This suggests that the additional genetic variation generated by amitosis of a heterozygote can increase the rate of adaptation following sex and may help explain the evolutionary success of the unusual genetic architecture of Tetrahymena and ciliates more generally. 
    more » « less
  4. Experimental evolution has provided novel insight into a wide array of biological processes. Species in the genus Tetrahymena are proving to be a highly useful system for studying a range of questions using experimental evolution. Their unusual genomic architecture, diversity of life history traits, importance as both predator and prey, and amenability to laboratory culture allow them to be studied in a variety of contexts. In this paper, we review what we are learning from experimental evolution with Tetrahymena about mutation, adaptation, and eco-evolutionary dynamics. We predict that future experimental evolution studies using Tetrahyemena will continue to shed new light on these processes. 
    more » « less
  5. Abstract Evolutionary biologists have long sought to understand what factors affect the repeatability of adaptive outcomes. To better understand the role of temperature in determining the repeatability of adaptive trajectories, we evolved populations of different genotypes of the ciliateTetrahymena thermophilaat low and high temperatures and followed changes in growth rate over 6,500 generations. As expected, growth rate increased with a decelerating rate for all populations; however, there were differences in the patterns of evolution at the two temperatures. The growth rates of the different genotypes tended to converge as evolution proceeded at both temperatures, but this convergence was quicker and more pronounced at the higher temperature. Additionally, over the first 4,000 generations we found greater repeatability of evolution, in terms of change in growth rate, among replicates of the same genotype at the higher temperature. Finally, we found limited evidence of trade‐offs in fitness between temperatures, and an asymmetry in the correlated responses, whereby evolution in a high temperature increases growth rate at the lower temperature significantly more than the reverse. These results demonstrate the importance of temperature in determining the repeatability of evolutionary trajectories for the eukaryotic microbeTetrahymena thermophilaand may provide clues to how temperature affects evolution more generally. 
    more » « less
  6. A widespread adaptive change in antiherbivore response is seen in a common plant species in urban environments across 160 cities. 
    more » « less